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This paper reports a simple novel technique for the pumerical simula-
tion of hot collision-free plasmas. The method is termed Vlasav hybrid
simulation (VHS). A time varying phase space simulation box and grid
are defined, and the phase fluid within the box is filled with simulation
particles. The distribution function F {or §F} is defined on the phase
trajectory of each particle. At each timestep £ (or §F) is interpofated
from the simulation particles ento the phase space grid. Particles are
followed continuously until exiting from the phase box and are not
constantly recreated at phase space grid points. The algorithm is very
efficient, stable, and has low noise levels. Distribution function fine
structure is tolerated and the formalism does not require diffusion of the
distribution function. The VHS methed is particularly valuabie when the
flux of phase fluid across the phase box boundary is significant. In this
case VHS codes have a dynamic population of particles—giving great
efficiency gains over PIC codes with fixed particle populations. The
VHS method has been applied to the numerical simulation of triggered
VLF emissions in the magnetosphere and gives results in close

agreement with observations. % 1993 Academie Pross, [nc.

1. INFRODUCTION

This paper will introduce a novel methed for the numeri-
cal simulation of hot coilision-free plasmus. The method is
termed Vlasov hybrid simulation {VHS), since it uses infor-
mation derived from particles in order to construct the
distribution function at every timestep. The formalism is a
very general one for the solution of the Vlasov/Maxwell
equations and may be applied to any collision-frec plasma
probiem, where the resolution of the particle distribution
function in velocily space is important. The methodology is
strictly  collision-free.  However, collisional  affects and
velocity spice diffusion could be introduced but not casity
or convenientiy.

Application areas for the VHS method are extremely
diverse. The demonstrator application in this paper will be
the numerical simulation of triggered VLF emissions in the
carth’s magnetosphere, the VHS method being extremely
well suited to wave particle  interaction problems,
particularly thase in inhomogeneous media. Other obvious
application areas in space physics are nonlinear Landau

damping, ion acoustic double layers, nonlinear ion
cyclotron resonance, and simulations of cometary wakes,
ion recleases, and shock waves. There are expected to be
numerous applications to fusion and industrial plasmas in
cases where the plasma may be treated as effectively
collision-free. ’

It will be shown that the VIS method has signilicant
advantages over PIC codes [1] and also over other Vlasov
codes. The most signilicant positive features are:

(a)
(b)
{c)

easily.

{(d) The mecthod makes very efficient use of particles,
particularly when 8F < F,.

(e) No numerical diffusion of distribution function is
needed in order to attain stability,

VHS is a very stable algorithm.
The technique has very low noise levels.

Distnibution function fine structure is handled

(f} The VHS technique is particularly effective when the
lux of phase fluid al the boundary of the phase space
simulation box is signilicant. The methodology allows &
dynamic popuiation of simulation particles in which redun-
dant particles may be discarded from the simulation and
new particles inserted into the phase fluid as required.

2. BASICS

The Maxwell/Vlasov set of equations for a collision-free
plasma are

VxE=—Q§; V-B=0
ot

1 CE ()

-E = p/eg; VxB=pj+-5—

V-E = p/eq; xB=pjt+-5 =

and
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where it is assumed that M particle species are present.
Plasma charge density g and plasma current J are given by

- f ol

a=1

(3)

It should be noted that it may not be appropriate for all
particle species to be treated by VHS. Some species may be
described by fluid equations. Some components of the
plasma may be cold plasma or cold beams, better described
analytically or by PIC codes. The remainder of this paper
will consider only one species of particle to be described
totally by VHS.

The plasma is described as a Vlasov fluid occupying
phase space of appropriate dimensionality #. Granularity of
the phase fluid will be ignored. The unperturbed or initial
distribution function F,

Fy(x,v}=Fx,v,1=0), (4)
is required to be a regular and well-behaved function of the
phase coordinates x, v. Well-separated discontinuities are
permissible but delta function-like singularities (corre-
sponding to cold beams) are not allowed, Where cold beams
are present these must either be given a finite temperature to
incorporate them into the VHS formalism or treated
separately with a PIC code.

3. THE PHASE SPACE SIMULATION BOX

The first step is to construct a phase space simulation box
{PSB) which covers- the region of phase space deemed
significant for the problem at hand. In general the PSB will
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FIG. 1. Phase space simulation box and grid indicating possible box
motion.
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be a function of time as the simulation progresses. For exam-
ple, in a resonant wave particle interaction problem the
phase box would cover the range of velocities resonant with
the current wavefield. As the wavefield spectrum changes
during the simulation, so will the range of resonant
velocities and thus the phase box will move.

Next, a phase space grid is defined to fill the phase simula-
tion box. Henceforth, we shall assume a regular grid with
constant elementary volume dl=dx-dv. It should be
noted that the VHS technique is well able to accommodate
grids of varying density "', and indeed adaptive grids.
Figure 1 is a sketch of the phase box, showing the grid,
simulation particles, and indicating its possible motion.

4, SEIMULATION PARTICLES

The phase space simulation box is evenly filled with
simulation particles (SP’s) at the start of the simulation
(£ =0). At each time step every particle is pushed according
to the usual equations of motion:

X=v

(3)
(6)

Each particle trajectory is continuously followed until it
leaves the simulation box. Trajectories are not continuously
restarted at phase space grid points as in the paper by
Denavit [2]. New trajectories are continually started at the
phase box boundary.

Now each SP is embedded in the Viasov phase fluid and
moves with it. By Liouville’s theorem each SP conserves its
value of distribution function £(x, v, ). The values of F (or
OF) are defined on the phase trajectories of the simulation
particles. Thus during the simulation the value of the dis-
tribution function is known at a large number of points in
the phase box which are the locations of the SP’s. The func-
tion of the SP’s is solely to provide informarion, At each
timestep this information is used to construct the particle
distribution function on the fixed phase space grid and thus
make estimates of the zeroth and first moments of F—which
are, of course, plasma charge density and current density.

At each timestep we require the interpolation of the values
of the distribution function F, from the particles onto the
fixed phase space grid, giving grid values F; . This process
of interpelation is quite different from that in PIC codes and
other Vlasov codes, where a charge/current or, indeed, a
distribution function is assigned or distributed to the
neighbouring grid points.

Once a distribution funcion F  is defined on the fixed
phase space grid, estimates of charge p and current J are
easily obtained. For the 61D cases we have

{ =qdfz E!mn} F."jkfmn-
P ik 1

fmn

v=g/m(E+vxB).

(7)
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With the charge and current fields defined on the spatial
grid the electromagnetic fields may be pushed using
standard fieldpush techniques.

In many plasma simulation problems it might be more
convenient to define the guantity 6F on each simulation
particle phase space trajectory, where

OF(x, v, 1)=F(x, v, 1) — Fy(x, ¥) (8)

whence

d dF, ¢ daF,
ZoF= v-4Lyg e}
dtéF v(’)x m( +vxB} dv

(9)
The demonstrator application defines §W for each SP,

where

d

Z6W=—gE.v, 10
dté qE-v (10)

In the VHS formalism the distinction between defining F or
&F on the phase space trajectories of SP’s is fairly trivial, and
hence the VHS method may be regarded as one in which éF
is pushed forwards in time.

A final comment will be made in this section. The VHS
method is not the same as a PIC code in which particles are
weighted according to the initial distribution function. The
interpolation procedure and also the treatment of the phase
box boundaries ensure that the manner in which available
information is treated is quite different.

5. INTERPOLATION OF DISTRIBUTION FUNCTION
FROM PARTICLES TO THE PHASE SPACE GRID

Clearly for the VHS method to be viable we need a simple
and efficient method for the interpolation of F from the
particles onto the fixed phase space grid. Figure 3 shows a
representation of phase space of dimensionality # = 2. Using
a derivative of the method of area weighting a suitable
expression for the value of distribution function F; at grid

point ij is
! !
Fe{ {2 )
{"=1 =1

where the weight factor «,. for the I'th particle is given by

o fofi )

The sum is taken over all / simulation particles within the
four square area surrounding the grid point in question, The
above technique will give a very low noise level in F; and is
simple and easy to encode.

(11)

(12)
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FIG. 2. Representation of a two-dimensional phase box showing
phase fluid flow and particle management.

A small number of grid points if { < 1 %) will not have any
SP’s within the surrounding four square area. In these cases
F; has to be calculated by linearly interpolating values of F
from neighbouring grid points.

The expressions in Eqs.(11) and (12) are readily
generalised to the case of n-dimensional phase space.
Figure 4 shows a representation of n-dimensional phase
space with elementary volume dI"=[T17_, dx,. A total of 2"
hypercubes will be adjacent to grid point ijk... . If a total of
! particles lies within this volume of phase space then a
suitable expression for F,, is given by

e g e )

(13)
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FIG. 3. Interpolation of distribution function F, from particles to the
fixed phase space grid—2D case.
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where the weighting factor for particle I’ may be defined by

Br=]] (dx,— 5x;',')/H dx,,.

]

(14)

Here dx! defines the vector from the grid point ijk - - - to the
{'th particle.

Obviously a wide variety of definitions for the weighting
factor are possible and most of these will give a reasonable
performance. (See, for example, Okuda and Cheng [201].)
The greatest need is for an algorithm that gives simple,
vectorisable, and economical code. There is some scope
for theoretical research and simulation in order to optimize
these weighting factors.

6. THE REQUIRED DENSITY OF SIMULATION
PARTICLES IN PHASE SPACE

The situation is now as follows. The phase box is a func-
tion of time and is fitled by a fixed grid. Simulation particles
are embedded in the phase fluid within the phase box and at
each timestep the distribution function is interpolated from
the particles onto the fixed grid, enabling the J/p fields to be
calculated. We now express the basic requirement of the
VHS algorithm which we will term the fundamental density
law. This may be stated as follows:

For a phase space of dimensionality # the probability
p that any grid point has at least one simulation
particle in the surrounding 2" grid hypercubes must be
very close to unity—say 1.0 > p>0.995.

The question then arises—what average density of SP’s in
the phase fluid ensures that the fundamental density law wiil
be satisfied? We first note from Liouville’s theorem that the
density of SP’s in the phase fluid g is conserved following a
particle and thus the flux of SP’s in phase space is
divergence-free. There is no tendency for SP’s to bunch and
leave grid points uncovered. Uncovered grid points are
most likely to occur on the boundaries of the phase box and
these near boundary grid points are best omitted from the
computation of J and p.

The demonstrator application described later in the
paper reduces to a 2D phase space problem. Numerical
experimentation revealed that an average density of
p = 12/dI' gave a grid point “coverage” of 99.5%. It is
easily shown that for an n-dimensional phase space we need
a simulation particle density of

= po=48/(2" dI). (15)

With increasing dimensionality fewer SP’s are needed per
elementary volume 47, a fact that has been noted in connec-
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tion with PIC codes. So lor a 6D phase space a density of
p=0075/dI" would suffice.

In some problems such as hot beam excitation there will
be regions of phase space where /= 0. Simulation particles
need not be placed in these regions. It is only necessary to
increase SP density somewhat to 1.25, in regions where
F=0, and then all phase space grid points #k... that have
no SP’s in the surrounding 2" hypercubes may be regarded
as having F; =0

We now emphasise an important point. The only
criterion governing SP density in the phase fluid is the
fundamental density law. Higher densities than the
approximate limit g, defined above are quite permissible.
Increased particle density results in more computational
workload, but fewer missed grid points, more accurate
estimation of J, p, and better averaging over distribution
function fine structure.

Another feature of the VHS algorithm is that it does not
matter if the density of particles in the phase fluid is highly
variable, as long as it never falls below the minimum levels.
This is a feature unique to VHS that is a direct result of the
interpolation procedure. We shall see that this makes it
relatively easy to deal with a flux of phase fluid into and out
of the phase space box. PIC codes and other Vlasov codes
arc alt highly sensitive to particie density in phase space, and
these codes usually have great difficulty in dealing with
fluxes at the phase box boundary.

It is useful at this point to give an estimate of the number
of particles required by a VHS simulation of a “typical”
problem. Consider a simulation with one spatial dimension
with 1000 gnid points, and three velocity dimensions with
grid dimensions 30x30x30. Then we have N, ~30°x
1000 x 4.8/16 ~8M, an entirely achievable figure with
modern supercomputers.

7. PARTICLE CONTROL

Any VHS code needs to have software that controis the
particle population and maintains the density g of SP’s
everywhere above the minimum level §,. Over parts of the
phase box surface the nD “velocity” vector X of the phase
fluid relative to the velocity of the boundary itself is directed
outwards. Over this surface phase fluid is flowing out of the
phase simulation box. Simulation particles embedded in the
fluid leave the box and by implication find themselves in a
region of phase space that is “unimportant.” Such particles
are providing information not required and are discarded
from the simulation. Thus VHS allows for a free flow of
phase fluid out of the simulation box. Such phase fluid still
“exists” but is not monitored and is not used to estimate the
J/p fields.

Conversely parts of the phase box surface will see phase
fluid flowing in. Clearly new SP’s must be inserted into this
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phase fluid. The best way of doing this is as follows. At each
timestep all grid points on or near the phase box boundary
are examined. Where there are no particles within adjacent
hypercubes a new particle is inserted into the phase fluid.
The exact position where new particles are placed will deter-
mine the resulting density of SP’s in this inflowing phase
fluid. Figure 2 gives a pictorial view of the phase box and the
management of simulation particles. The VHS algorithm is
on the whole very simple and trouble-free, but this can be
one aspect which needs care. In the demonstrator application
it was nevertheless found that controiling particle densities
was quite easily achieved.
To summarise, the phase box is filled with particles at
t =0. Each particle trajectory is followed until it leaves the
phase box, and new SP’s are continually created at the box
boundary where fluid is flowing in. We thus see that the
total number of particles N, in the simulation at any one
time is variable. The particle population is dynamic and
continually changing. This can result in great increases in
efficiency for some problems. In the demonstrator applica-
tion particles leaving the phase box are those that have
fallen out of resonance with the current wavefield. New
particles introduced drift into resonance with the wavefield
during their traversal of the phase box.
Since the total number of particles N, can vary, a VHS
code needs to keep N, within reasonable bounds, say,
Nepg< N, < 1.3Ncgy, (16)
where Nc¢ is the number of hypercubes in the phase box. If
N, falls too low, inaccuracy will increase and uncovered grid
points will result. The solution is to create extra SP’s in the
interior of the phase box at grid points that have few nearby
particles. If N, becomes too large the program will slow up,
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FIG. 4. Interpolation of distribution function F, from particles to the
phase space grid—schematic representation for n-dimensional case.
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and there wili be a danger of overflow in arrays holding par-
ticle variables. Again the remedy is to remove SP's from the
interior of the phase box at grid points where the number of
nearby particles is large. In the demonstrator application it
was found that these measures were rarely necessary and
total particle numbers were adequately controlled by careful
insertion of new particles at the boundary.

At internal boundaries inside the phase box where grid
density 4" ~' changes it will also be necessary to create or
remove particles depending upon the direction of flow of
phase fluid.

There will exist a wide variety of problems where flux of
phase fluid into and out of the phase box is negligible and
where F~0 on the phase box boundary. In this case the
simulation may proceed with a fixed population of particles,
provided that the initial density is somewhat raised to
~ 1.2, so that grid points with no local SP’s may be safely
assumed to correspond to F=0.

8. VALUES OF DISTRIBUTION FUNCTION FOR
SIMULATION PARTICLES

At r=0 simulation particles are given a value for
distribution function of F, (6#=0), where F, should be
self-consistent with the presumed initial fizids.

The previous section explains how new simulation par-
ticles have to be inserted into the phase fluid at the phase
box boundary. The question immediately arises—what
vaiue of distribution function should be assigned to these
new particles? A reasonable choice is to put F=F, the
unperturbed initial value for distribution function (ie.,
0F=0, 6W=0). For many problems this will be quite
sufficient. If the simulation turns out to be unduly sensitive
to the choice of F for new particles this is probably
symptomatic of a phase box that is too small.

In certain cases a better value for F for new particles may
be available. In the demonstrator application, for example,
a linear expression for 6F may be derived from the
electromagnetic field history of the simulation. Where a new
particie is inserted into the interior of the phase box an
initial value for F is readily secured by interpolating from
neighbouring grid values F, .

9. SOME COMMENTS ON DISTRIBUTION FUNCTEON
FINE STRUCTURE

In many plasma simulations, as timg progresses the
distribution function F may develop fine structure in phase
space. For example, this occurs in nonlinear Landau
resonance where resonant particles make many oscillations
in the potential trap. Usually distribution function fine
structure does not have a great deal of physical significance
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since during the evaluation of J/p it will be averaged out.
However, fine structure can be a considerable nuisance for
Vlasov simulation codes. Other Vlasov simulations such as
that of Denavit [2] and Cheng and Knorr [3] need to be
stabilised by diffusive terms that smooth out fine structure.
The VHS method, however, is intrinsically stable against
distribution function fine structure since no attempt is made
to evaluate the derivatives of F in phase space. The VHS
method does not diffuse the distribution function. This is
considered neither desirable nor necessary.

The only effect of fine structure on the VHS algorithm is
a decrease in the accuracy of the estimation of J/p. Such
errors may be reduced by either employing a finer phase
space grid or increasing the density of SP’s. Such measures
will not usually be necessary,

10. CONSERVATION OF ENERGY AND MOMENTUM

A few remarks will be made here concerning conservation
of energy and linear momentum. In the case of PIC codes
one has a closed system of fields and particles, and one
is in a position to demand that the entire set of equations
governing the plasma simulation conserves total energy and
linear momentum. A VHS Viasov code, however, is not a
closed system. Expressions for momentum and energy
balance involve regions of phase space outside the current
phase space simulation box and would require knowledge of
phase fluid no longer being monitored.

The immediate aim of the VHS technique is to estimate
the J/p fields as accurately and efficiently as possible. In the
limit that J and p are completely accurate then the VHS
code will conserve energy and momentum— provided, of
coursg, that the field and particle push equations are conser-
vative of these quantities. In reality J and p will have
stochastic errors which will result in nonconservation of
energy and momentum. Further research needs to be done
in this area.

11. PREVIOUS VLASOV SIMULATIONS

In the 1970s and 1980s a number of papers were written
on Vlasov simulations—usually problems with one spatial
dimension. Successful results were obtained and many
authors commented on the potential benefits of the Vlasov
approach to the numerical simulation of plasmas.

Two key methods stand out in the literature—that of
Cheng and Knorr [3] and Denavit [2]. These two methods
are quite different from each other and from the method
described in this paper. The approach of Cheng and Knorr
is to numerically integrate the Vlasov equation on a phase
space grid. Particles are not used at all in this process.
Because of distribution function fine structure (filamenta-
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tion) the numerical procedure is very prone to instability
and stabilisation is only achieved by an unphysical numeri-
cal smoothing of the distribution function. The actual
algorithm to step F forward in time is very complex
and computationally expensive. Related algorithms and
splitting schemes by Boris [4] and Boris and Book [5] are
also very complex. The Cheng and Knorr method should, in
principle, cope with any phase box boundary condition and
allow for free entry and exit of phase fluid. This aspect was
not discussed in their paper although it seems that correct
application of boundary conditions could be quite difficult,
Cheng and Knorr applied their novel technique to the
nonlinear one-dimensional Landau resonance problem and
reported the method to be highly accurate and efficient.

Other authors have used Cheng and Knorr’s approach to
good effect. Chanteur [ 6] performed very successful simula-
tions of ion acoustic double layers, and Bertrand ez al. [7]
reported successful Vlasov simulations using the method.

By constrast Denavit [2] uses particles in order to time
advance the distribution function. Particles are started off at
phase space grid points and are assigned appropriate values
of F. After M timesteps the value of F for each particle is
assigned to the nearest grid points (rot interpolated as in
VHS). This effects a reconstruction of the distribution
function. This reconstruction process invokes phase space
diffusion which serves to eliminate fine structure and keeps
the whole algorithm stable. In the limit of M —» 1 Denavit
reconstructs every timestep, which gives strong diffusion in
phase space. In this limit, flux of phase fluid into and out of
the phase box can be accommodated. Many of Denavit’s
simulations use M =10 which gives a hybrid solution,
partly Vlasov, partly PIC. This mode of operation makes
fluid flux across the phase box boundary difficult to accom-
modate. In the limit M — oo, the distribution function is
never reconstructed and the method reverts to a PIC code
in which particles are weighted by the distribution function.
Denavit's method has been very effectively applied to
two stream instability problems and to nonlinear Landau
resonance (bump in tail instability) [2, 8-107].

Another Viasov technique is the so-called “6F algorithm.”
This was first described by Tajima and Perkins [21] and is
covered in Tajima [22]. This method was developed by
Kotschenreuther [11,24] into a highly successful code,
some results of which are presented in Kotschenreuther
[23]. In the above article another version of the &F
algorithm due to Wong is described and is claimed to be
virtually “noise-free.” Additional development of the &F
algorithm may be found in Beyers [257, Dimits et al. [26],
and Barnes et al. [27].

The §F method is as foliows. The quantity F is computed
for each simulation particle. Phase space is filled with
particles each occupying a known volume dx - dv. At each
timestep the quantity (v3F-dx-dv) is assigned to the
nearest spatial grid points, and hence J/p fields are



186

calculated. The method resembles that of Denavit with no
reconstruction and also has PIC features except that 3F is
pushed. The method has been applied to the simulation of
the 1D Viasov equation and also to a purely magnetic
electron drift kinetic ampere law. The Viasov code was
found to considerably outperform corresponding PIC
codes. Kotschenreuther [11] pointed out that for many
fusion problems 6F < F, and in these cases PIC codes are
highly noisy and very inefficient.

Despite superficial resemblances between the SF algo-
rithm and the VHS algorithm, the two are quite different. In
the 6F algorithm particles are distributed evenly in the
phase fluid, and the phase volume associated with each
particle is presumed to be preserved during the simulation.
Consequently no velocity grid is required, and {6Fv dx dv)
is distributed to the nearest grid points as in PIC codes. By
contrast, with VHS, particle density in the phase fluid is
freely variable above a certain minimum and F (or 6F) must
be truly interpolated onto a velocity space grid. This
different formalism is, of course, required if only a portion
of phase space is to be resolved and fluxes across the phase
box boundary are to be accomodated.

12. ADVANTAGES OF VHS COMPARED TO PIC CODES

The VHS algorithm has many advantages when com-
pared with PIC codes. For the demonstrator application the
advantages are overwhelming. We will here itemise the chief
positive features of VHS:

{a) The procedure for interpolation of the distribution
function from particles to phase space gnd results in very
low noise levels in the current/charge density fields.

{b) The VHS aigorithm makes very efficient use of par-
ticles. In PIC codes the distribution function is expressed in
some average sense by the density of the (weighted ) simula-
tion particles. With VHS the same quantity is expressed as
a floating point number. It is at once apparent that to
achieve the same degree of accuracy a PIC code will need far
more particles than a VHS code. Fven worse, for many
plasma simulation problems F < F,, and in this case the
signal to noise ratio of PIC codes becomes very bad indeed.

(c) The VHS algorithm has a time-varying phase box
and is able to accommodate flux of phase fluid across the
boundary. The dynamic particle population of VHS codes
conveys huge advantages relative to PIC codes with their
fixed populations of simulation particies. Time is not wasted
following particles that are no longer of interest. A good
example of this is the demonstrator application which is a
wave particle interaction problem in an inhomogeneous
medium, The VHS code automatically restricts itself to
resonant particles, whereas a PIC code would end up with
a sizeable fraction of nonresonant particles,

D, NUNN

(d) The VHS code offers good control over velocity
space and good diagnostics, in that the distribution function
1s immediately available.

(e) In any problem where F, is not small on the phase
box boundary, PIC codes will generate large “end errors.”
VHS codes normally assume that F= F; outside the phase
box, which is a reasonable approximation. In PIC codes the
regions of phase space not filled with particles correspond to
F=0, which is a far worse approximation.

13. THE DEMONSTRATOR APPLICATION

The demonstrator application is a space plasma simula-
tion in the VLF band at 3-4 kHz. The code is a simulation
of rising and falling frequency emissions triggered by
narrow band pulses transmitted by the VLF facility at Siple
Antarctica (see the paper by Helliwell and Katsufrakis [12]
and numerous papers by the STARLAB group at Stanford).
The triggered emissions result from nonlinear electron
cyclotron resonance in the equatorial region of the earth’s
magnetosphere at L ~4.2. There is extensive literature on
this subject, reviewed in [17]. Previous numerical simula-
tions have been LTS PIC codes {8, 97, to which the reader
is referred.

In this paper we shall present only the most general
features of the simulation, plus some of the latest results
from running the code. For full details of the VLF probiem
the reader is referred to a recent paper by the author in
Comiputer Physics Communications [13]. The triggered
VLF emission problem is an excellent one with which to test
simulation techniques. The phenomenon is strongly
nonlinear as well as being “simple” and well defined.
The presence of the active VLF experiment at Siple
station enables simulations to be compared directly with
experiments—in effect the entire magnetosphere becomes a
natural laboratory.

The code has one spatial dimension z, the distance along
the L =42 magnetic field line. The z grid covers the
nonlinear interaction zone and extends a few thousand
kilometers either side of the equator. The VLF wavefield is
assumed to be a parallel propagating (ducted) whistler
wave field, restricted to a bandwidth of about 100 Hz.

In order to simulate emissions with a sweeping frequency
the centre frequency of the wavefield is allowed to move
freely but with constant bandwidth. This quasi-narrow-
band wavefield interacts with an unstable anisotropic
distribution of energetic electrons (=xkeV). The problem
is one of nonlinear electron cyclotron resonance in an
inhomogeneous medium, since the resonance velocity
Vies= (w0 —)/k is a function of position z due to the
magnetic field inhomogeneity and also a function of time
due to the sweeping frequency of the emission.
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The code has three velocity dimensions. Perpendicular
velocity magnitude V'L is a weak coordinate and may be
dealt with in a simplified manner [13]. The important
velocity components are V, (or V*=V,— V. (z,t=0))
and i, the phase of V L relative to base phase ¢,.

The phase box covers the nonlinear interaction region
centred on the equator z= —Z, - Zy. The coordinate
¥ =0 21 must clearly be covered. The range of parallel
velocity ¥* covered by the phase box includes the range
of resonant velocities appropriate to the current global
wavefield plus several “trapping widths” either side. Clearly
when simulating a triggered emission the average frequency
changes with time and so must the V* range. Thus in this
problem the phase box is clearly a function of time. The flux
of phase fluid across the boundary of the phase box will be
highly significant. Particles are constantly falling out of
resonance with the wavefield and are no longer of interest.
New particles are continuously being swept into resonance
with the wavefield. Thus VHS with its dynamic particle
population is highly suited to this problem. Indeed PIC
codes and Vlasov codes with F=0 on the phase box
boundary will require enormous numbers of particles in
order to successfully simulate the triggered emission
problem,

14, BASIC EQUATIONS OF THE VLF SIMULATION

We will here cover the basic equations governing the
VLF wave particle interaction problem [137]. Inside the
plasmapause the ambient plasma is assumed to consist of a
dense cold electron population of density Ne = 400/cc, plus
a hot tenuous component that is anisotropic and provides
the relatively few nonlinear cyclotron resonant electrons. At
VLF frequencies the ion population may be assumed to be
immobile.

The ambient magnetic field B.(z) is taken to be a
parabolic function of z about the equator,

B.(z) = B.(0) = B.(0)(1 + 0.5Xz2). (17)

It is worth noting that the parabolic form of the
inhomogeneity is critically important and totally determines
the character of the wave particle interaction process.

For a narrow band wpi problem we first require the
definition of a base frequency m,- a base wave number kg(z),
and a base phase ¢,(z. ¢).

e z)=woz-r kolz) d. (18)

The narrow band whistler wavefield may then be described
by a dimensionless complex amplitude R{z, r), where the
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phase of R equals the phase of the perpendicular electric
field € L(z, ¢} relative to the base phase, ¢, and

R=Re". (19)
Maxwell's equations plus the linearised equations of motion

of the cold electrons furnish the dimensionless field equa-
tion, which is a simple advective equation of the form

é aN o Ve - - e
(—+ Vg—) R= 287 JRVR  (20)

ot az ko

where Vg is the whistler group velocity and J is the complex
dimensionless resonant particle current. The last term in
Eq. (20) is a phenomenological loss term. It represents
“nonlinear unducting loss” and other loss mechanisms.
When amplitudes reach nonlinear levels the resonant
particle current J wil! radiate into unducted modes and
wave ecnergy will escape from the duct. This is a very
complex problem and will require a full 3D code to simulate
it. Another saturation mechanism is believed 1o involve
velocity space diffusion due to electrostatic waves, since the
nenlinear wave particle interaction process drives the
plasma to a state in which it is unstable against electrostatic
waves. This is also a very difficult problem to simulate,

The Particle Equations of Motion

A complex perpendicular velocity may be defined by

Vi=Vx+iVy, Vi=iPlLi| 21)
and a perpendicular velocity phase iy defined by
W =arg(V L)~ do. (22)
A dimensionless parallel velocity V'* is defined by
V=V -V _.z), (23)

where V(z) is the electron cyclotron resonance velocity at
W and is

Vies = (o — £{2))ko(2). (24)

The equations of motion now reduce to the dimensionless
form

lj’:koV*

Rk, V
— ;lcosw—rﬁHQo

SW=—RV1 cos(yf — ¢),

(25)

= (26)

(27)



188

where W is the change in particle energy. The quantity
0,(z) is the inhomogeneity factor which is mainly propor-
tional to field gradient 4B, /dz but has a term in cold plasma
gradient dNe/dz. Thus 0, is closely proportional to z.

The Resonant Particle Current J

The dimensionless resonant particle current J may be
shown to be given by the following integral [13]

Fz 1) =k, Lw (FoV L2 Js(V1)dVLi,  (28)

where

2x V¥
Is=[ [ T evew vy v dveap. (29)
0 Ve

1

The quantities V¥, V¥ are the limits of the coordinate J'*
in the simulation box. The term Fy is the appropriate
gradient of the unperturbed distribution function Fy(u, W)
that drives the whistler instability; i.e.,

8F, 2 OF,
Fro|90y 200 30
’ [@W+wo ﬁﬂ]w.u (30)

where the energy W is given by

W=V L2+ (Vlz)+ V*))2 (31)

and the magnetic moment g is given by

u=V_>1%2;  B=B.z)/B.(0) (32)

We thus see that Fy is a function of ¥ L, z, and the centre
frequency f of the current wavefield. The functional
dependence of F{ on these three parameters is very critical
in determining the emission triggering behaviour of the
code. One approach to the problem is to define a full
function Fg(u, W) analytically, and then calculate Fj as
required. It has been found, however, to be cheaper and
more convenient to define Fy directly. In this simulation
we express [y as a linear/quadratic function of parallel

resonant energy. So

Fy=FyVL,z=0,t=0)j (33)
F=1+a,9+%4q", (34)

where
q= [(Vres(z) + V*)z - Vres(o)z]/z (35)

and a,, o, may be functions of VL.
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18. APPLICATION OF THE VHS FORMALISM TO
THE VLF SIMULATION PROBLEM

The problem at hand concerns narrow band wave particle
interaction, and this allows certain simplications to be
made. We first note that the complex field R advects at a
velocity Vg. We thus set up a spatial field grid (z!, =1, Nr),
where Nr~ 600 and the grid separation AZr = Vg A, At
being the simulation timestep. The field £ is only defined at
the z/ and at each timestep the value of R advects to the
right to the next grid point. All particles of interest have
velocity V. close to V,(0). As far as the evaluation of
SW(V L, V* 4,z t) is concerned it is ‘a legitimate
approximation to advect the SP's at V. {0). Hence we may
establish a spatial particle grid (z%, I=1, N,), where
N;=512 and the grid separation AZ,= —V . (0) 41,
Simulation particles are only defined on this grid, and at
each timestep the entire set of SP’s at one spatial grid point
is moved leftwards to the next one. During the implernenta-
tion of the field push and particle push equations it is
necessary to cross-interpolate between these two spatial
grids. This is readily accomplished using precomputed
weighting coefficients.

Evaluation of the Current J on the Particle Grid

We first note that the coordinate V' 1 in Egs, (28), (29) is
relatively “weak.” Significant nonlinear particles have a
pitch angle range from 45-65°, so the integral in Eq. (28)
may be repiaced by a summation over N, , discrete values,
where N, | can be quite small. Most of the physics is secured
with N, in the range 2-5. Larger values of N,, are of
course desirable but very expensive in terms of computing
time. Similarly the integral over coordinate ¥ can be
replaced by a discrete summation over N, values, where N,
is in the range 16-20, and the integral over V'* replaced by
a discrete summation over N,. in the range 30-60. Now the
quantity W is evaluated by integrating W along particle
trajectories in the R field. Along these trajectories V¥ L
undergoes only smail changes and to a good approximation
may be put constant, Thus there is no need to invoke the
VHS interpolation procedure for the coordinate ¥ 1. The
same goes for coordinate z since SP’s are only defined at
grid points z!,. We thus set up a separate 2D phase space
box in coordinates , ¥* at cach grid point 2/, and for each
value of ¥ L. The current J, at z/, 1s then obtained from

Nvl
Ji=ky ¥ VLIFY, VL, f) (V1,2 (36)
i=1
where
Ny Ny=
Js(V1,2)=dl'Y Y e¥ WV L.y, VE 1 zh)
j=1 k=1
(37)
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and

dr = Ay AV* (38)

is the area of one grid square.

The VHS formalism is thus applied to N, - N, separate
(4, ¥*) planes, where 8 W is evaluated on each phase space
trajectory. It is easily shown that the flux of particles in the
s, V'* plane is divergence-free and thus the phase fluid is
incompressible in these new variables.

Simulation Control

The bandwidth and the amplitude of the wavefield must
be controlled as the simulation progresses. The real satura-
tion mechanisms are nonlinear unducting and diffusion due
to electrostatic waves. Both of these effects increase rapidly
when wave amplitudes reach nonlinear levels {>1 pT) at
which nonlinear particle trapping occurs. In the code,
saturation has to be modelled phenomenologically by a
damping term —yR that is a rapidly increasing function of
wave amplitude. It was found that the bandwidth of the
wavefield tends to increase without limit as the simulation
proceeds. The simulation code, however, can only accom-
modate a limited bandwidth of order 100 Hz, depending on
the memory and computer power available. The solution is
as follows. At every timestep the wavefield is spatially
DFT'd and the central frequency fis determined. The field
is then filtered to the desired bandwidth with a filter centred
on f. Simultaneously the centre of the V'* axis of the phase
box is adjusted so that it corresponds to the resonance
velocity at frequency f.

Simulation Diagnostics

The VLF simulation code can output a wide variety of
diagnostics as follows:

(a) Wave amplitude R in picoteslas and wave phase ¢ as
functions of position z and time &.

(b} Components of resonant particle current J parallel
to E, (termed Jr) and perpendicular to E, (Ji).

{c} The spatial DFT of the wave field, either as
individual spectra or in the form of a f/1 plot.

(d) A time DFT of the field R exiting from the simula-

tion box, presented as an f/t plot. This is done for several
frequency resolutions.

(¢) Phase-averaged distribution function F at various
z, L

() Ginosurf plots of W in the , V'* plane for any
26V,

(g) Piot of average frequency fagainst time.

i89

{h) Calculation of average electrostatic growth rate as
a function of z at any time—plus the bandwidth of the
unstable electrostatic wavefield.

19. NUMERICAL RESULTS

In this paper we shall only present the results for one run
of the VHS/VLF code. This is a simulation of the triggering
of a rising frequency VLF emission (“riser”) by a CW pulse
from the Siple VLF facility in Antarctica. Simulation data
are set out in Table I,

The sitnulation is driven by two pitch angle “beams,” for
reasons of economy. These are of roughly equal “strength”
and close together at high pitch angles ~60°,

Figure 5 shows wave amplitude R(z, ¢} in picoteslas at a
time of 525 ms. This corresponds very well to the profile for
a quasi-static riser generation region as described in [14].
The ducted VLF wave particle interaction problem is seen
to have a considerable excess of input power—the profile is
hard up against the saturation level for z > 500 km. In the
real system nonlinear unducting loss will provide the domi-
nant saturation mechanism, Future simulations should seek
to model the loss mechanisms more precisely. The low
amplitude end of the generation region is at z= —360 km
and corresponds to a point of zero net inhomogeneity as
described by Helliwell [15].

Also plotted on the graph is the wave number bandwidth
that is unstable to Langmuir (electrostatic waves),
expressed as a fraction of the maximum bandwidth in the
simulation. The third curve is an estimate of the average
electrostatic wave growth rate (in hertz) within this unstabie
band. This reaches about 30 Hz (1600 dB/s) over the

TABLEI

Input Data for Siple Riser Simulation

L shell no. =42

2¢=18.87kHz

He=179 kHz

Cold plasma density Ne = 400/cc

Pulse frequency (initial) = 5048 Hz

Pulse lenpth = 89 ms

Initial amplitude B, =0.1 pT

Saturation amplitude B_,, =495 pT

Trapping frequency at B,,.; F, %39 Hz
Simulation bandwith =94 Hz

Linear growth rate at equator = 135 dB/s
NF=30; N,=16; N;=512; N, =603; NvL =2,
Total no of simulation particles N, = 578K to 627K;
V L, =238 (pitch angle = 64.4°)

¥ 1,=132 (pitch angle = 67.3°)

(VL2Fy),,, =k 35

(VL2Fy)y,,,=k-40

o) =0y, =0
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strongly nonlinear part of the generation region, i.e., from
+1000 to — 1000 km. Clearly, since Langmuir waves will
have small group velocities, electrostatic wave amplitudes
will reach high levels and cause significant diffusion of the
phase-averaged distribution function, thus acting as an
additional saturation mechanism. The origin of this elec-
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trostatic instability is casily understood. Particle trapping in
a negative inhomogeneity results in a “hole” in the distribu-
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gradients of the phase averaged distribution function will
give electrostatic instability. This is confirmed by Fig. 6
which plots phase averaged distribution function Fat V1 ,
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as a function of V* for various z, at a time 1 = 1200 4¢. The
depressions in F correspond to trapped particles.

Figure 7 plots resonant particle currents Jr and J7 as func-
tions of z at 1 = 525 ms. Again these curves agree with com-
putations of the generation regions of riser emissions [ 141].
The magnitude and phase of the resonant particle current
are as expected from simple trapping consideration [13].
The oscillatory components in Jr, Ji are directly due to the
sidebands present in the wavefield,

Figure 8 shows the wave number spectra of the simula-
tion field R(z, 1) at t = 1.06 and 2.12 s. A strong sideband is
observed at a separation of 40 Hz, which is close to the trap-
ping frequency F,, at the saturation amplitude. It was shown
in [16] that VLF waves are upper sideband unstable in
negative inhomogeneities when nonlinear trapping occurs,
the maximum instability being at a separation ~ F,. Since
the riser generation region is entirely in the region of
negative inhomogeneity, these spectral structures are as
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expected. Indeed the mechanism for frequency change in a
riser may be regarded as being a successive transfer of wave
energy to the next upper sideband.

Figure 9 plots the wave amplitude R(z, r) in picotesias
exiting from the simulation region. The amplitude increases
rapidly and exponentially to the saturation level and stays
there. In reality observed amplitude behaviour shows slower
exponential growths starting from very low amplitudes.
This probably involves effects due to broadband unducted
turbulence and nonlinear unducting.

The additional phase ¢ exiting from the simulation box is
shown in Fig. 10. This increases monotonically with time as
£%, as expected from a riser.

Figure 11 plots spatial DFTs of the field R(z, ¢} in the
simulation box every 12 ms, giving an f-¢ plot of the whole
simulation. The equivalent frequency resolution of each
DFT is 1.86 Hz. The riser starts off as closely spaced
sidebands and then becomes a succession of discrete rising

"

T T T T T T T
180.00 380.00 540.00 720.00 900.00 1080.00

T T T 1
1260.00 1440.900 1620.00 1800.-00 1980.00 2160.00 2340.00
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FIG. i1. Spatial DFTs of simulation waveficld, with equivalent resolution of 1.86 Hz, presented every 12 ms to give au /¢ history of the simulation
field R(z, t). The emission consists of successive rising frequency elements with separation ~ 40 Hz.
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FIG. 12, Atrue ff plot of the time series £(Z 5, 1) emerging from the simulation region. Frequency resolution is 5.64 Hz. The emission now appears
as a succession of constant frequency pulses with a somewhat variable separation of order 40 Hz.

elements, giving a curious ropelike appearance to the plot.
The slope of the riser is about 300 Hz/s, in reasonable agree-
ment with observations. It should be noted that when
simulating a riser or failer the code periodically divides out
accumulated frequency shifts for reasons of stability and
numerical accuracy. Certain guantities such as Vg, ¥, (0),
kg, and the spatial grid are not adjusted to take into account
large changes in frequency.

Figure 12 is a true f-¢ plot applied to the time series R
exiting from the simulation box. The frequency resolution in
this case is 5.64 Hz. The cmission is scen to consist of a series
of short pulses with somewhat variable frequency separa-
tions of order 40 Hz. The original triggering pulse s com-
pletely swamped by the powerful emission. The triggering
puise is usually more apparent in the observations.

Figure 13 is a sample contour plot of §W in the ¢, ¥'*
plane at 1=18004d¢, V1=V .1,, and at z=34 4Z,. The
group of trapped particles with large positive W near
V*=0, y =23 is clearly visible,

A large number of further simulations have been per-
formed, including NAA triggered emissions, simulations of
small frequency shifts with NAA MSK transmissions, Siple
sideband experiments, and whistler-triggered emissions.
These results will appear in future publications.

20. COMPUTER SCIENCE CONSIDERATIONS

All the computationally intensive parts of the VHS/VLF
code are able to be vectorised, including the interpolation of
OW from the particles to the phase space grid. The most
expensive part of the code are: {a} particle push (about
40%); (b) interpolation of 8 W from particles to grid (30%);
(c) integration of 3W over velocity space to obtain J (20%);
{d) normalisation ol i (5%); and {e) field push, insertion of
new particles, particle control (5% ). With 600 K simulation
particles the time for one timestep on the IBM3090/600E is
about 8 s, with a whole simulation taking about 6 h on this
machine.
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The VHS/VLF code has a parallelism of Nj=512 in its
computationally intensive parts and is thus well suited for
implementation on massively parallel computation engines.
A linear processor array could be mapped onto the spatial
grid, and the amount of interprocessor communication
would be quite small relative to the amount of computation
being done by each processor.

Regarding VHS codes in general, the particle push, the
interpolation procedure, and the integration of éF over
velocity space should always vectorise. Particle push and
integration of 4F will clearly be easily parallelised.
Parallelisation of the interpolation procedure may be
achieved, aithough not so easily as in the narrow-band VLF
case. For a K-fold parallelism the phase box would have to
be divided into K overlapping equally sized regions such
that the total boundary area was minimised. Particles
would need to be assigned to each region, and then
interpolation could take place separately in each region,
Grid points on the boundaries between regions would
require special treatment involving communication between
adjacent processors.

21. CONCLUSION

A pgeneral system for the numerical simulation of colli-
sion-free plasmas has been presented. The method, termed

VHS, is far more efficient than PIC codes particularly when
0F < F,. The algorithm is stable, tolerant of distribution
function fine structure, and does not require artificial diffu-
sion of the distribution function. The unique feature of the
algorithm is the interpolation of distribution function from
particles to a fixed phase space grid. This enables one to
accomodate a flux of phase fluid into and out of the phase
space simulation box and hence have a dynamic population
of simulation particles. For some problems this can confer
huge advantages.

In this paper VHS is applied to the triggered VLF
emission problem, but it is expected that the method will be
universally applicable to any collision-free plasma.
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